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Abstract 

The Baton Rouge fault system of Louisiana is a well-known recently active system 

consisting of en echelon, east trending, down-to-the-south normal faults across the northeast 

periphery of the Mississippi River delta plain. Two, industry-donated, 3-D seismic surveys 

across 860 km
2 

image deep-seated faults below Lake Borgne, along an east strike that parallels 

previously well mapped segments of the Baton Rouge system. Four major faults (> 6 km fault 

trace) are imaged within the seismic surveys across the Lake. The industry seismic data were not 

processed for reliable imaging at depths (<600 m). To bridge the depth gap in seismic, high 

resolution, shallow seismic data has been acquired in areas where faults are projected to intercept 

the surface. Integration of high resolution data with industry 3-D seismic data is fundamental to 

evaluating whether these faults are recently active (Holocene) and if they are strike aligned to 

nearby, linear wetland loss patterns.  
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Chapter 1. Introduction, Organization, and Significance 

1.1 Introduction 

This study uses large-scale industry seismic data as a novel approach to understand 

whether deep-seated structures of the Baton Rouge Fault System (BRFS) in Louisiana have 

affected shallow Holocene strata and geomorphology. The study focuses additionally on 

identifying the strike-parallel extent of the fault system across a portion of eastern coastal 

Louisiana.  

The BRFS consists of en echelon, east-trending faults across the northern border of where 

Holocene Mississippi River delta plain strata and coastal wetlands onlap Pleistocene and older 

uplands to the north (Russell, 1940) (Fisk, 1944). The Baton Rouge system trends from west of 

Baton Rouge to at least as far as eastern Lake Pontchartrain (Fig. 1), whether the system 

continues farther east has not yet been published outside of internal industry documents. This 

system dominantly consists of normal, down-to-the-south faults that, to date, have been of 

primary interest (e.g. Durham and Peeples, 1956; Lopez, 1991; Saucier, 1994; Gagliano et al., 

2003; Dokka 2006, 2011; Heinrich, 2006; McCulloh et al., 2012; Yeager et al., 2012 and Haggar, 

2014) because of documented property damageabove the system (McCulloh, 2001) and 

suggestions that it serves as a brine pathway into shallow aquifers (Bray and Hanor, 1990) 

(Tomaszewski, 1996) (Stoesell and Prochaska, 2005). 

Penland et al. (2002) and Gagliano et al. (2003) questioned whether faults can be a 

mechanism of land-surface elevation change and consequently drive relative sea level rise that 

can lead to land loss in Louisiana. Gagliano et al. (2003) suggested that the effect of active faults 

on surface morphology manifests with different signatures, including distinct straight lines and 

scarps along or across the marsh platform, aligned natural channels, and ballooned channels (Fig. 



 2 

2) (Gagliano et al. 2003).  Previous work suggested that only 0.57% of all wetland loss in 

Louisiana from 1932 to 1990 is driven by active faults (Penland et al., 2002). Industry level 

seismic data to truly image deep structures toward the surface was however not available to fully 

appreciate the magnitude of large, deep-seated, fault slip on near surface geology. Lopez et al. 

(1991) studied and suggested rates of slip for a small segment of the BRFS.  Questions still 

remain about the eastward extent of the BRFS below the land bridge into Lake Borgne, the slip 

history, and whether modern surface morphology has geomorpholically responded to fault 

motion. 
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Figure 1. Satellite image showing the location of the study area (outlined in red) and the New Orleans “Land Bridge” (outlined in 

yellow) (image from USGS Landsat Look Viewer March 27, 2015). 
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1.2 Purpose and Hypothesis 

1.2.1 Purpose 

This study consisted of two primary phases: 1) the analysis of deep (2,000 – 24,000ft) 

(609 – 7,315m) industry-standard seismic data and 2) the collection and interpretation of shallow 

(30ft) (9m) high-resolution seismic data (Chirp).  

The first phase focused on determining whether deep-seated faults are present within the 

industry seismic and if they are present can they be mapped up section to the limit of the 

processed industry data. Once deep seated faults were identified efforts focused on using 

shallow, high-resolution seismic to determine if deep faults of the study area (Fig. 1) have 

affected Holocene strata and geomorphology of the last 50 years.  

1.2.2 Hypothesis 

 The hypotheses are that: 1) the well-known east-trending, normal faults of Lake 

Pontchartrain extend along strike into Lake Borgne, 2) If the BRFS extends into Lake Borgne, a 

similar offset to that of Lake Pontchartrain will be seen there, and 3) Linear marsh features 

reflect sub surface fault motion.  

1.3 Importance 

 The effects of Hurricane Katrina landfall along the northern Gulf in 2005 resulted in the 

Hurricane and Storm Damage Risk Reduction System (HSDRRS) for New Orleans, the program 

reinforced weak points in the flood protection system and created flood protection in unprotected 

areas (Reid, 2013). This required approximately 133mi (214km) of enhanced flood protection 

(Reid, 2013).  
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The closest portion of the HSDDRRS to this study area is the Inner Harbor Navigation 

Channel surge barrier. This surge barrier is 26ft (8m) high and approximately 1.8 mi long 

(2.9km). While this project is located along the boundaries of the study area, if faults are found 

to be active in the study area there is the potential for branching faults to reach the project area.It 

is important to understand the subsurface geology, considering the large investment ($1.7 

million) in the project. 

Figure 2. Conceptual model showing some of the different geomorphic responses to active 

surface faulting (modified from Gagliano et al., 2003), including inundation, marsh 

fragmentation, distributary alignment and bay enlargement.  Other examples include 

geometrically abrupt changes in marsh-edge trends and Lake Formation. 
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Chapter 2. Lake Borgne Study Area/Geologic Framework 

2.1 Louisiana Faults 

The BRFS is part of a larger, generally down-to-the-south Cenozoic fault network that 

spans the entire southern part of Louisiana (Fig. 3). The network of faults generally trend in the 

east west direction and consist of down–to-the-south normal faults. Most of the faults within the 

BRFS are growth faults, whereas the others are non-growth normal faults. Growth faults are 

distinct from other normal faults, inasmuch that they contain thicker stratigraphic units on the 

down-thrown side compared to time equivalent units on the up-thrown fault block (Ocamb, 

1961). This fault system (Fig. 3) originated when high sedimentation rates created an overburden 

large enough to cause a detachment décollement along a weak layer such as salt or shale (Peel et 

al. 1995). It is thought that faults within this system undergo times of quiescence and then 

become active again during sedimentary loading (McCulloh et al., 2012).   

2.1.1 Baton Rouge Fault System 

Faults of the BRFS were first recognized by aerial photography (e.g.  Fisk, 1944) and 

Murray (1961) suggested that the Baton Rouge system faults were originally active in the Eocene 

and reactivated in the Quaternary based on sedimentary thickening. This fault system extends 

west ward where it is known at the Tepetate system (Murray, 1961). East of Baton Rouge, 

Louisiana the fault system trends across Lake Pontchartrain (Lopez, 1991) and the Pearl River 

(Yeager et al., 2012). Further to the east this fault system continues into Lake Borgne, where its 

trend is unknown. Lopez (1991) used seismic data to map faults that transverse Lake 

Pontchartrain as well as photographs that capture elevation offset on the highway 11 bridge, 

which is evidence of fault motion. Other studies of the Lake Pontchartrain faults have used 

shallow high-resolution seismic data (Roth, 1999; Yeager et al., 2012), Lidar (Dokka 2011), and 
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habitat changes (Haggar, 2014) to map faults in the area. To the south (8mi) (12.8km) fault 

traces have elsewhere within south central Louisiana fault traces have been mapped using direct 

overhead and oblique aerial photography to identify scarps within marsh platforms that may 

indicate vertical offset as well as shallow seismic to confirm the existence of faults (Kuecher et 

al. 2001, Gagliano et al. 2003, and Martin, 2005) 

2.1.2 Fault Slip Rates 

Studies examining rates of fault motion along this system have suggested that pre 

Holocene slip (0.01-0.024in/decade) (0.025-0.06cm/decade) was slower than the modern rates 

(2-4in/decade) (5-10cm/decade), (Smith and Kazmann, 1978; Roland et al., 1981). Yeager et al. 

(2012) reported rates of fault slip in the lower Pearl River area at 0.05in/yr (1.2mm/yr) during the 

last 1,300 years and 0.008in/yr (0.2mm/yr) during the last 3,700 years. 
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Figure 1. Map showing generalized distribution of faults within Cenozoic strata of southern 

Louisiana (originally from Murray, 1961, modified by McCulloh, 2001).  
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2.2 Lake Borgne and Lake Pontchartrain 

Lakes Maurepas, Pontchartrain and Borgne are located in the Lake Pontchartrain 

drainage basin. This basin covers ~17000mi
2 

(44,000 km
2
) and extends from northern 

Mississippi to the Gulf of Mexico (Flocks et al., 2009a). Lake Pontchartrain is the largest of the 

lakes within the drainage basin with an area of 770mi
2 

(2,000 km
2
) (Flocks et al., 2009a). Within 

the basin there are eight main waterways that supply fresh water to Lakes Maurepas, 

Pontchartrain and Borgne. These include the Natalbany, Tickfaw, Tangipahoa, Blind, Amite, and 

Tchefuncte rivers and bayous Lacombe and Bonfouca. Tidal passes in the basin are the Rigolets, 

Chef Menteur Pass, North Pass, and Pass Manchac. The Rigolets and Chef Menteur Pass connect 

Lake Pontchartrain to Lake Borgne and the Gulf of Mexico, whereas North Pass and Pass 

Manchac connect Lake Pontchartrain to Lake Maurepas (Fig. 4). 

Lake Pontchartrain and Lake Borgne are both shallow estuaries with a maximum depth of 

16.5ft (5m) and 10ft (3m) respectively (NOAA, 1996). Lake Pontchartrain has a maximum 

length of 42mi (67km) and a maximum width of 33mi (37km), whereas Lake Borgne has a 

maximum length of 17mi (28km) and a maximum width of 23mi (38km). The salinities within 

Lake Pontchartrain average approximately 5ppt (Sikora et al., 1981), whereas the salinities in 

Lake Borgne range between 2 and 15ppt (USACE, 1984). Most of the water that is supplied to 

the lakes is fresh water and comes from either Lake Maurepas, supplied fresh water by the Blind 

River, Tickfaw River, and Amite River, or the Pearl River (Roth, 1999).
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Figure 4. Base map depicting the water ways that exist within the Pontchartrain basin and between Lakes Maurepas, Pontchartrain, 

and Borgne (base image from USGS Landsat Look Viewer March 27, 2015). 
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2.2.1 Lake Pontchartrain and Lake Borgne Formation 

Two different models of formation have been proposed for Lake Pontchartrain. The first 

by Otvos (1978) suggested the lake formed in two phases, the first phase began approximately 

4.8ka when a barrier system (Pine Island Barrier) partially blocked off the Gulf of Mexico 

(Otvos, 1978). Stapor and Stone (2004) suggested an inner shelf sand source for the Pine Island 

Barrier and that sediment transport to the barrier system occurred with a brief sea-level fall 

approximately 4.1ka (Stapor and Stone, 2004). A second phase of lake formation began 3.9ka 

when the St. Bernard delta complex prograded closing off more of the open connection to the 

Gulf of Mexico and thus forming Lake Pontchartrain (Otvos, 1978). The St. Bernard complex 

was active for approximately 2,000 years before becoming abandoned (Kolb, 1975) (Fig. 5).  

The second model for the formation of Lake Pontchartrain also explains the formation of 

Lake Borgne and is more tectonically driven compared to the previous model. The Lopez (1991) 

model suggests that Lake Pontchartrain and Lake Borgne began as a delta plain that subsided 

with down-to-the-south motion along the Baton Rogue-Denham Springs and Lake Borgne fault 

systems. Lopez (1991) compared width to depth ratios (collected by Price, 1974) of other broad, 

shallow lakes in southern Louisiana to Lakes Borgne and Pontchartrain and concluded that Lakes 

Borgne and Pontchartrain did not form from transgression like other lakes of Louisiana. 
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Figure 5. Chronological series of figures showing the formation of Lake Pontchartrain and Lake 

Borgne (modified from Flocks et al., 2009). 
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2.2.2 Lake Geologic Framework 

During the mid to late 90’s (1994, 1995, 1996, 1997, and 1998) the USGS conducted a 

study of Lakes Borgne and Pontchartrain. This project included the acquisition of 2-D, high-

resolution seismic data (Fig. 7) and shallow (< 20ft) (6m) cores throughout the lake (Fig. 6 and 

Appendix A). Most of the seismic profiles were collected along west-trending directions, 

perpendicular to the ideal orientation (north tending) for imaging west-trending faults. 

Additionally, the seismic data is of poor character in Lake Borgne and of little use to this study. 

The shallow cores on the other hand provide a sedimentary framework of Lake Borgne Holocene 

strata. The average depth of penetration for the cores was 5ft (1.5m) with a maximum of 18ft 

(5.4m). On the basis of these cores the near-surface sediments of Lake Borgne are approximately 

25% sand.    

Lake Pontchartrain and Lake Borgne are low-energy environments with ~70% of 

Holocene sediments within the lake consisting of a grain size less than 63μm, which also 

suggests limited sediment input (Flocks et al., 2009b). The Holocene strata primarily consist of 

soft gray to dark-gray silty muds with few sand burrows (Flocks et al., 2009b); silt lenses and 

shell lags are present locally  (Flocks et al., 2009b). In some locations a lithologically distinct 

Holocene stratum is as much as 27-in (70-cm) thick and consists of a heavily bioturbated, 

brownish-gray mud with sand-filled burrows and shell lags. Flocks et al. (2009b) suggested that 

the brown coloration is a result of oxidation that is promoted by bioturbation, dredging, and 

waves that stir up sediments. Shell lags within the unit are acoustic layer that shows up on high-

resolution seismic surveys (Flocks et al., 2009b). Pleistocene sediments, below the 

unconformable Pleistocene-Holocene contact (Saucier, 1994); consist of stiff, olive-gray, silty 

clays with oxidized organic material and sand-filled burrows (Flocks et al., 2009b).  
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Figure 6. Base map showing the locations of USGS cores (base map from USGS Landsat Look 

Viewer March 27, 2015, core locations from USGS (1998).  
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Figure 7. 2-D seismic lines acquired during a 1994-1998 USGS study with the starting point of each line denoted with a pink dot 

(image from USGS Landsat Look Viewer March 27, 2015). 
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Chapter 3. Methods: Seismic Data and Aerial Photography 

3.13-D Methodology 

3.1.13-D Seismic Data  

Locations of deep-seated faults within Lake Borgne were mapped using two, donated 3-D 

industry seismic surveys, collected by WesternGeco. One survey covered part of west Lake 

Borgne (142mi
2
, 367km

2
), whereas the other covered 190 mi

2 
(492 km

2
) of east Lake Borgne 

(Fig. 8). The sample rate for both seismic surveys was 4ms and both seismic surveys were time 

migrated. The western survey is the deeper of the two extending to a two-way travel time of 6s, 

whereas the eastern survey is clipped at a two-way travel time of 1.5s.  

Figure 8. Base map displaying the extent of the east and west 3-D seismic surveys (image from 

USGS Landsat Look Viewer March 27, 2015).  
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Vertical resolution of both surveys was calculated using a method in (Avseth et al. 2010), 

where the wavelength is determined by dividing the average velocity by the dominant frequency 

(Fig. 9). The wavelength for each survey was then divided by four to determine the resolution of 

the seismic data; resulting in a 201ft (61m) vertical resolution for the western survey and 58ft 

(18m) for the eastern survey because of the different dominant frequency of each survey. 

Figure 9. Plots of the amplitude survey spectrums for the east and west surveys. The dominant 

frequency for each of the surveys is the amplitude peak. In this project the eastern survey had a 

dominant frequency of 35Hz, whereas the survey to the west was 10Hz. 

 

3.1.2 Synthetic Seismogram 

There was no readily available time-depth data for the Lake Borgne and Lake 

Pontchartrain area so one had to be created for the purpose of tying wells into the seismic data. 

An accurate way of creating a time-depth chart is to construct a synthetic seismogram. The 

inputs required to construct a synthetic seismogram using Synpack (an IHS Kingdom extension) 

are digitized sonic and density well logs. There were recent (2008) well logs in the Lake Borgne 

area that contained the required logs, but they were in a TIF format, that is not recognized by IHS 

Kingdom. To digitize the well logsinto a suitable format an extension of the IHS Kingdom suite, 

called raster log editor, was used. The raster log editor extension allows one to import non-digital 

well log files and allows the user to define well log tracks, as well as calibrate the depth. Both 
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the density and sonic logs were manually digitized by tracing the log lines of the 10,420ft 

(3176m) deep Devon Energy Corporation state lease 19241 well number 1. After the proper well 

logs were digitized a synthetic seismogram was created (Fig. 10) and fit to the actual seismic 

trace. Once the synthetic seismogram was aligned with the actual seismic trace (peaks with peaks 

and troughs with troughs) a time-depth chart was created and since the Devon Energy well was 

one of the only wells in the area with both sonic and density logs it was feasible to apply this 

time-depth chart to all of the other wells in the area. 
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Figure 10. Left part of the figure shows the sonic and density well log inputs for the synthetic seismogram. Middle part of the figure 

shows the synthetic trace individually and overlain with the actual seismic trace. The right side shows the resulting synthetic on the 

Devon Energy API: 1708720382 well and how well it ties in with the amplitudes.   
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3.1.3 Well Logs 

Well logs are abundant in Lake Borgne (Fig. 11) and Lake Pontchartrain (Fig. 12) area 

because 1960s through 1970s hydrocarbon exploration. All well logs of this study (n= 27) were 

obtained through the Louisiana Department of Natural Resources (sonris.com) and uploaded into 

IHS Kingdom using the raster, log-editor extension. Most of the well logs in this area only 

contain spontaneous potential (SP) and resistivity, primarily because it was not common practice 

to use gamma ray logging tools when these wells were drilled. The SP log shows the electrical 

potential between the rock layers and the borehole tool and porous strata (sand) are represented 

on a SP curve differently than non-porous strata (shale). For example the SP of a porous stratum 

will yield a curve that has a lower value relative to the SP curve of a non-porous stratum. 

Resistivity curves show the electrical resistivity of pore fluids within the strata and units with 

saltwater filled pores will create a signature that is distinctly different from strata with 

hydrocarbons.  

Well logs of this study were used to establish age-depth relationships within the industry 

seismic reflection data. Logs within the Lake St. Catherine (Fig. 12) oil field indicate sand bodies 

at depth, age constrained with foraminifera Textularia stapperi that can be lithologically as well 

as chronostratigraphically correlated to well logs from Lake St. Catherine to Lake Borgne.  

Three wells in Lake St. Catherine were correlated 2.8mi (4.5km) to the first well in Lake 

Borgne using SP and resistivity logs (Fig. 13). Similarly to the 3-D seismic surveys the well logs 

located in Lake Pontchartrain were also used to provide an age constraint on the 2-D seismic 

lines. The difference is that on the 3-D seismic surveys well locations fell were located within 

the survey and wells were located in between the 2-D lines. This means that foraminifera picks 

needed to be extrapolated from the well to the seismic line.   
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Figure 11. Map showing well locations in Lake Borgne. Black colored wells are oil wells, 

whereas red wells are gas wells. A solid well center indicates a productive hydrocarbon well. 

The well indicated by the star is the Devon Energy well used for the synthetic seismogram 

(background image from USGS Landsat Look Viewer March 27, 2015).  
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Figure 12. Well locations in Lake Pontchartrain. Black colored wells are oil wells, whereas red well are gas wells. Solid well center 

indicates a productive hydrocarbon well (image from USGS Landsat Look Viewer March 27, 2015)
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Figure 13.  Map showing the cross section line across the five wells that were correlated from 

Lake St. Catherine to Lake Borgne in figure 13 (image from USGS Landsat Look Viewer March 

27, 2015). 
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Figure 14. Two well logs located in Lake St. Catherine were correlated into Lake Borgne. The 4300’ sand (red) was dated as middle 

Miocene on the basis of foraminifera control, specifically Textularia stapperi (well logs obtained from sonrise.com, foraminifera age 

from Bureau of Ocean Energy Management, 2003; trend of cross section is shown on figure 13). 
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3.1.4 Fault Interpretation 
 

A focus of this project was to interpret the seismic surveys and determine whether any 

deep-seated faults are present at depth in the study area. To facilitate this, a seismic attribute 

known in IHS Kingdom as dip of maximum similarity (sometimes called a discontinuity 

attribute) was used. Discontinuity attributes scan all of the traces in the seismic survey and 

measures how dissimilar the amplitudes of adjacent traces are to each other. The result of this 

style of analysis is a new seismic volume within which white areas are similar (e.g. laterally 

continuous strata) and black areas are dissimilar, which can be faults, processing artifacts, and 

changes in dip (Fig. 15).  

Figure 15. Time slices at a two-way travel time of 1s. Image on the left is amplitudes and image 

on the right is dip of maximum similarity with the location of faults indicated by arrows (inset 

map (image from USGS Landsat Look Viewer March 27, 2015). 
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Faults identified in the data set were mapped on the smallest interval possible (110ft) 

(33.5m) in the survey grid to get the most accurate representation of the fault plane. To ensure 

that most of the faults were found within the dataset strong seismic reflectors were mapped 

throughout the entire survey, while mapping the reflector any offset was marked as a potential 

fault. A strong reflector in seismic data exists when there is a drastic change in the velocity at 

which the acoustic waves travel through the strata, which indicates a change in lithology or pore 

content. The eastern seismic survey (Fig. 16) only becomes resolvable at a two-way travel time 

of approximately 0.4s due to lack of processing; this makes it unclear if the faults mapped in the 

survey extend into the near surface (1600ft)(487m) sediment. Faults were projected to the top of 

the seismic volume (0s two-way travel time) by extrapolating the at-depth fault angle 

stratigraphically upward (Fig. 17). This assumes that the magnitude of fault dip is constant from 

depth into more shallow strata but on the basis of there is no observable change in the curvature 

of the fault plane this is justified. Other studies (Kuecher et al. 2001 and Lopez, 1990) have 

shown that listric geometries of faults are typically observed at 2.5s to 2.0s which is similar to 

the faults observed in the western Lake Borgne survey. The result of this effort was the creation 

of a map showing the expected intersection of the at depth fault traces with the surface (Fig. 18).  

This map provided the fundamental basis for determining where near surface investigations 

should take place to assess whether deep–seated faults have impacted the surface or near surface 

stratigraphy; a starting point for the Chirp seismic collection. 
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Figure 16. Uninterpreted seismic line A-A’ within the east Lake Borgne survey (inset map background from USGS Landsat Look 

Viewer March 27, 2015). 
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Figure 17. Seismic line A-A’ showing the attitude of the three faults that are the primary focus of this study. The dashed portion of the 

faults represents the intervals that were projected stratigraphically upward. Yellow horizon is Middle Miocene in age determined from 

wells that were projected into the survey. From now on faults will be labeled as such fault 1 (blue), fault 2 (green), and fault 3 (red) 

(inset map background from USGS Landsat Look Viewer March 27, 2015). 
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Figure 18. Projected fault traces at surface (0s two-way travel time). Three faults are present 

fault 1(blue), fault 2 (green), and fault 3 (red) (background image from USGS Landsat Look 

Viewer March 27, 2015).
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3.2 Chirp Methodology 

3.2.1 Chirp System 

Chirp seismic has been used in a wide array of studies focused on geohazards, pipeline 

routes, and marine archaeological investigations (Dyer, 2011; Tian, 2008; Bull et al. 1998) with 

success partially because of the system’s ability to image the subsurface with excellent vertical 

resolution. The Chirp system used for this study was an Edgetech SB-216 system, which consists 

of a tow fish and a 3100-p topside processor. The Edgetech SB-216 tow fish contains a singular 

transducer for emitting the acoustic signal and two receiver arrays. The system operates in the 

frequency range of 2-16 kHz providing penetration depths of as much as 300ft (91m) depending 

on the sediment characteristics. Sand-rich strata are likely to be on the shallow end of penetrating 

depths (20ft) (6m) whereas mud-rich strata result in penetration depths of 300ft (91m). The 

vertical resolution for this system ranges between 2.3in (5.8cm) to 3.9in (9.9cm), which means 

this system could capture potential offsets in the Holocene as small as 3.9in (9.9cm). The topside 

unit is a real-time processor that converts the raw seismic data into transit waveforms. More 

specifications of the Edgetech SB-216 system are contained in table 1. 
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Table 1. Specifications of the Edgetech SB-216 sub bottom profiler system that was used in this 

study to collect Chirp seismic data (from Edgetech Hardware Manual, 2014). 

 

3.2.2 Data Collection 

Two days of Chirp surveys were conducted during calm marine weather during which 30 

survey lines were collected providing coverage along 32mi (51km). The sample rate of collection 

was 46 microseconds which means that data was collected every 46 microseconds. 

A Trimble DGPS was linked during the surveys to a laptop running Hypack Hydrographic 

Survey software which was used for navigation.The Trimble DGPS was offset from the Edgetech 

tow fish by approximately 10ft (3m) there by providing a high degree of geographic positional 

accuracy. The planned survey lines (Fig. 19) were created using Hypack and when connected to 

the Trimble DGPS, Hypack provides line guidance (left right indication) during data collection. 

The other laptop (Panasonic Toughbook) provided storage and a real time look at the Chirp data 

as it was collected using Edgetech Discover software. The Trimble DGPS was also fed into this 

computer to provide locations for the shot points along the survey lines. The Chirp was able to 

penetrate to an average depth of approximately 15ft (4.5m). 

SB-216S 
 

Frequency Range 2-16 KHz 

Pulse Bandwidth 2-15 KHz 2-12 KHz 2-10 KHz 

Vertical Resolution 2.3in 3.1in 3.9in 

Penetration in Sand 20ft 

Penetration in Clay 260ft 

Beam Width 17 20 24 

Transmitters 1 

Receiver Arrays 2 

Input Power 112 Watts 

Dimensions 
 

Length 41 in 

Width 31 in 

Height 18 in 

Weight 160 lb 

Depth Rating 984 ft 
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3.2.3 Chirp Data Set 
 

Edgetech Discover software collects data as: 1) standard Society of Exploration 

Geophysicists (SEG-Y 3200 byte header) and 2) JSF (proprietary Edgetech format). Since the 3-

D industry survey was already loaded into IHS Kingdom as SEG-Y, it was logical to record 

Chirp in SEG-Y format so that data could be loaded into 3D seismic project. The loading 

procedure for the Chirp seismic data is different from the industry seismic because firstly the 

type of data (2-D vs. 3-D) and the geodetic projection in which the data was collected. To load 

the Chirp seismic data into the IHS Kingdom project required a conversion of the projection 

system from latitude and longitude WGS 1984 to state plane NAD 1927 (U.S. survey ft.). This 

required extracting the header data from SEGY Explore (an IHS Kingdom extension) into an 

Excel spreadsheet. The data on the spreadsheet is then converted into the desired format (NAD 

1297 state plane) using the National Oceanic and Atmospheric Administration’s (NOAA) 

VDatum software, the result is a spreadsheet with the converted locations of every shot point 

recorded on that specific line. The shot point coordinates were then loaded into IHS Kingdom for 

each Chirp line. Once the shot point locations were loaded, the amplitudes of individual shot 

points could be loaded. 

3.2.4 Chirp Interpretation  

 The objective of collecting the Chirp images was to determine whether there existed any 

shallow signs of stratigraphic fault offset or stratigraphic disruption that could be the result of 

fault motion. Fault-induced deformation may be difficult to identify in the shallow stratigraphy 

and might not appear as clear stratigraphic offset because of the high water content of the 

substrate (Yeager et al. 2012), which could lead to ductile deformation rather than brittle 

deformation. In the area that the Chirp was collected and with the relatively shallow depths of 
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penetration it was to be expected that any signs of faulting would be ductile deformation because 

the sediments are unconsolidated.  

3.2.5 Holocene/Pleistocene Boundary   

The inferred Holocene/Pleistocene boundary was also interpreted on the Chirp lines to 

give an age perspective on how far the chirp was able to penetrate. To determine the approximate 

depth of the Holocene-Pleistocene stratigraphic contact in the study area an isopach map of the 

Holocene thickness (Kulp et al. 2002) was used. This depth was then converted into time using 

the average velocity of sound through unconsolidated sediment (3921f/s) (1500m/s) (Kulp et al. 

2002; Suter, 1986; Kindinger, 1988; Sydrow and Roberts, 1996). 

Figure 19. The 49 Chirp seismic lines that were planned to be collected in the middle of Lake 

Borgne where deeper industry imaged faults were projected to the surface. Short lines are ~1mi 

(1.6km) long, whereas the longest lines are ~ 2mi (3.2km) (image from USGS Landsat Look 

Viewer March 27, 2015). 
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3.3 2-D Lake Pontchartrain Methodology 
 

3.3.1 Data Set 

 
 The Lake Pontchartrain data set consists of 18, 2-dimensional seismic lines that cover the 

entirety of the lake (Fig.20) for a total distance of 382mi (614km). The seismic data was 

collected in 1985 by WesternGeco using a DigiSeis airgun. The sample rate for the data 

collection was 4ms and is time migrated. The calculated vertical resolution of the data is 201ft 

(61m) with a dominant frequency of 10Hz. The 2-D lines image a two-way travel time of 6s 

which is approximately 24,300ft (7406m) based on an average velocity of 8,100ft/s (2468m/s) 

that was calculated from the time-depth chart created by the synthetic seismogram. Compared to 

the two 3-D seismic data the 2-D seismic data were processed to a more shallow depth (400ft, 

122m vs. 1620ft, 493m), which allows deep faults to be imaged closer to the lake bottom. The 

purpose of using the Lake Pontchartrain 2-D seismic lines was to determine whether faults of 

Lake Borgne are along-strike continuous into Lake Pontchartrain.  

3.3.2 2-D Interpretation 

 Fault interpretation is different on 2-D seismic lines, compared to 3-D seismic volumes, 

because of are large distances between each seismic line (4mi) (6.4km). This makes fault 

interpretation a challenge because it is difficult to establish which faults are the same on adjacent 

2-D lines. Horizon mapping on 2-D is similar to 3-D, the 2-D lines cross each other which allows 

the transfer of horizons from line to line. There are 7 wells that contain paleo-data within Lake 

Pontchartrain that helped constrain age relationships of amplitude horizons (Fig. 12).
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Figure 20. Base map showing the 2-D seismic lines in Lake Pontchartrain (image from USGS Landsat Look Viewer March 27, 2015). 
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3.4 Marsh Imagery Methodology 

Satellite imagery was compiled for this study with the purpose of investigating changes 

in marsh morphology proximal to faults in Lakes Borgne and Pontchartrain. The imagery was 

collected by the USGS’s LandsatLook program. The Landsat mission began in 1972 with a goal 

of collecting images for planetary observation. Since the beginning of the program 8 satellites 

have been put into orbit, two of which are presently capturing images. Images from the mission 

are searchable through the USGS interface LandsatLook Viewer. In this study satellites 4, 5, 7, 

and 8 were used to establish a time frame from July of 1982 to present day. From July of 1982 

until present day there were a total of 989 images with <20% cloud coverage; these images were 

analyzed, which resulted in 62 images that contained full imagery coverage of the study area.   
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Chapter 4. Results 

4.1 3-D Seismic Faults 

 An analysis of the 3-D seismic surveys led to the recognition of four major faults (>3.7mi 

fault trace) (6km) within Lake Borgne (Fig.15). While there are many smaller faults (< 3.7mi 

fault trace) (6km) in the area, the major faults whose extent reaches the vertical (depth) boundary 

of the east Lake Borgne seismic survey will be the focus for this study. All of the major faults 

identified within this study are east striking, similar to the larger regional-scale fault trends of the 

northern Gulf of Mexico basin (e.g.Murray, 1961). Emphasis will be placed on the three faults 

that are closely grouped together (faults 1, 2, and 3) (Fig. 18) because of the time restrictions of 

this study. Faults 1 (blue), 2 (green), and 3 (red) have trace distances of approximately 4mi 

(6.4km), 7mi (11.2km), and 7.7mi (12.4km) respectively. Fault offsets are greater at depth and 

gradually decrease as the fault approaches the lake bottom. Calculated slip rate from Lower 

Miocene (~20mya) of fault number 3 is .1in/100yr (2.5cm/100yr). The largest offsets occur on 

fault 3 (1,061ft) (323m) (red) with the mildest offsets occurring on fault 1 (minimal) (blue). The 

dip of the fault scarp is uniform with a near vertical value of 68° for the three faults, but the 

eastern survey limits the ability to determine if the dip angle changes with depth. Since the angle 

is relatively constant the confidence levelis increasedin the upward projection of the fault 

location. Faults were mapped using the smallest interval possible on IHS Kingdom to ensure the 

most accurate depiction of the faults. 3-D representations were created of each fault (Fig. 21) by 

transforming the individual fault picks into a single grid (plane) using a flex algorithm tool in 

IHS Kingdom.  The western seismic survey on the other hand is unclipped and images to a depth 

of 6s (~24,000ft) (7315m). At this depth the listric nature of the faults is revealed (Fig. 22). 
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Figure 21. 3-D fault scarp representation with depth contours for each fault shown in white lines. The mapped basal surface represents 

the middle Miocene (~12ma) horizon with coloration depicting depth of the horizon below the surface (inset map from USGS Landsat 

Look Viewer March 27, 2015). 
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Figure 22. Interpreted north-trending seismic line of the west Lake Borgne survey. The red fault shown here is the same red fault on 

the eastern survey (eg. figure 17 and 31) (inset map from USGS Landsat Look Viewer March 27, 2015).
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4.2 Chirp Seismic Faults  
 
 When interpreting the Chirp seismic data there was not any clear evidence of brittle or 

ductile fault induced deformation. However there was a channel found on 11 out of the 30 total 

Chirp lines (Fig. 23). A number of Chirp lines cross the channel in a cross stream direction (Fig. 

24), this allows for a measurement of channel width to be determined (500ft) (152m). The total 

depth of the channel was converted from 7ms TWT to a depth of 17ft (5.2m). Resolution in the 

Chirp data is high enough to be able to see individual migration surfaces (Fig. 25) that show the 

meandering of the channel throughout time. A number of Chirp lines capture a velocity pull up at 

the base of the channel; this is a material with a higher acoustic velocity (eg. shells or gravel). 

The channel closely follows fault number 3 for approximately 4mi (6.4km) then it meanders off 

of the data collection area. Since the data was only collected for 2,000ft (609m) on either side of 

the fault the channel gets lost when it doesn’t parallel the fault. Since the location of the channel 

can only be located where Chirp seismic lines were collected inferences have to be made about 

the channel location between lines.  
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Figure 23. Base map showing Chirp seismic lines collected. White lines represent collected lines that do not intersect a channel, 

whereas yellow lines represent collected lines that do intersect a channel (base map from USGS Landsat Look Viewer March 27, 

2015). 
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Figure 24. Chirp seismic line #8. This line intersects the channel (green) perpendicular to flow. The dashed blue line represents where 

the approximate Holocene/Pleistocene age boundary is based on an isopach map from Kulp et al. (2002) (inset map from USGS 

Landsat Look Viewer March 27, 2015). 

 

Figure 25. Chirp seismic line #18. This line intersects the channel at an oblique angle causing the channel (green) to appear wider 

than it actually is, point bar meanders are present.The dashed blue line represents where the approximate Holocene/Pleistoceneage 

boundary is based on an isopach map from Kulp et al. (2002) (inset map from USGS Landsat Look Viewer March 27, 2015). 
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Figure 26. 3-D representation of the interaction between the interpreted river channel (blue) and fault #3 (red). Chirp seismic line 18 

is also shown intersecting the fluvial channel. The inset map shows the length of the fluvial channel (blue) within the available data 

(inset map from USGS Landsat Look Viewer March 27, 2015). 
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4.3 2-D Seismic Faults  
 
 The northern section of Lake Pontchartrain contains multiple normal down- to-the-south 

faults. The faults extend up to 1,000ft (304m) from a depth of approximately 14,000ft (4267m) 

before they become unresolvable. Previous studies (Lopez, 1991; Roth, 1999) in this area help 

provide some guidance for the interpolation between areas of no data coverage. These faults 

strike similarly to the faults found in Lake Borgne and dip at an angle of approximately 65°. A 

favorable connection is made by extending the fault traces to the east where they come into 

contact with the Lake Borgne faults. This suggests that these faults are one in the same. The 

offsets for these faults are largest (Approximately 900ft (274m)) at depth (12,000ft) (3657m) and 

become smaller at more shallow depths. Faults in the southern part of Lake Pontchartrain (Figs. 

28 and 30) are similar to the northern faults but are resolvable at deeper depths (14,000ft) 

(4267m), providing a true perspective on their listric nature. After interpreting the faults on the 

2-D seismic data set in Lake Pontchartrain and projecting the fault traces eastward, two of the 

mapped faults in Lake Pontchartrain appear to continue into Lake Borgne (Fig. 32).  
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Figure 27. Uninterpreted 2-D seismic line 85-14 within Lake Pontchartrain (inset map from USGS Landsat Look Viewer March 27, 

2015). 
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Figure 28. Interpreted 2-D seismic line 85-14. Faults shown here are down-to-the-south normal faults. The blue and red faults shown 

here are thought to be the same faults mapped in blue and red mapped in Lake Borgne (e.g. Fig. 32) (inset map from USGS Landsat 

Look Viewer March 27, 2015). 
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Figure 29. Uninterpreted 2-D seismic line 85-09 within Lake Pontchartrain (inset map from USGS Landsat Look Viewer March 27, 

2015). 
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Figure 30. Interpreted 2-D seismic line 85-09. The red fault shown here is thought to be the same fault shown in figure 31 and extends 

into Lake Borgne (inset map from USGS Landsat Look Viewer March 27, 2015). 
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Figure 31. Traces of faults mapped in both the 2-D and 3-D surveys. Solid traces indicate confirmed fault traces within 3-D seismic 

whereas dotted lines indicate inferred fault traces between 2-D seismic transects.. The red and blue faults are correlated across the 

“Landbridge”, an important connection between New Orleans and environments of the Pleistocene uplands to the north (image from 

USGS Landsat Look Viewer March 27, 2015). Within the land bridge note the alignment of fault traces to linear and rectilinear open-

water and marsh edge relationships as well as the decrease in width of eastern Lake Pontchartrain and Lake St. Catherine. 
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4.4 Marsh Imagery 
 
 The focal area of the satellite imagery is the “New Orleans Landbridge”. This section of 

land lies in between both datasets (Lake Pontchartrain 2-D and Lake Borgne 3-D) and with faults 

correlated across the “Landbridge” it is the ideal location for fault expression at the surface. The 

imagery compiled for this study ranges in age from present day to 1982 with approximately one 

satellite image per year. A noticeable change in the marsh is present between the years of 2004 

and 2005 with Hurricane Katrina occurring within this time period. Within the years following 

Hurricane Katrina (2006 and 2007) more marshland loss took place within this area, even more 

than the time period immediately following hurricane Katrina (Fig. 32). This land loss follows 

the linearity of fault 3, which is correlated through this section of the “Landbridge”. This pattern 

of land loss continues from 2005 until 2013, then it appears that the marsh is able to reclaim 

some of the lost land in the present day (2016) (Fig. 33). This is the same fault (3) that is 

paralleled by the channel discovered in the Chirp seismic data.  
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Figure 32. Satellite images from 4 different years, overlain with the fault trace (solid line) and 

projected fault trace (dotted line) (images from USGS Landsat Look Viewer). 
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Figure 33. Satellite images from 3 different years, overlain with the fault trace (solid line) and projected fault trace (dotted line) 

(images from USGS Landsat Look Viewer). 
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Chapter 5. Discussion  

5.1 Fault Activity  

The interpretation of the industry seismic data sets revealed the locations of deep-seated 

faults in Lake Borgne. The Chirp data does not image any clear signs of offset within the 

stratigraphy in Lake Borgne; this could be caused by any of the following reasons.  

1) The deep seated faults identified of this study are not active and have not affected 

Holocene strata (last ~10kyr). 

2) There is no near surface fault motion within the stratigraphic depth that the Chirp is 

capable of imaging.  The faults are present at depth but have not been active during 

the latest Quaternary and therefore have not affected Late Quaternary strata. 

3) The faults are currently active, but due to wave activity the fault induced offset 

recorded in the stratigraphic record has been erased. 

4) The resolution of the Chirp system is limiting the ability of fault induced offset in the 

stratigraphic record to be imaged. 

5) The faults are not currently active, but were active earlier in the Holocene. The 

faulting has influenced the geomorphology of nearby rivers. 

5.2 Inactive Faults 

There is the possibility is that these particular faults are not active and instead are in an 

inactive period. Loading by sediments has been shown to be a primary driving mechanism of 

fault motion (Nelson, 1991).The reason that they have become inactive could be due to a lack of 

sedimentation into Lake Borgne. The Mississippi River Delta switched lobes from the St. 

Bernard to the Lafourche approximately 1.5ka (Törnqvist et al., 1996) this would reduce the 
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sediment input into the Lake Borgne area substantially. This would allow the forces from 

differential loading to equalize and cease movement of faults.  

5.3 Preservation of Stratigraphy 

The large surface area of the lake combined with water depths <10ft (3m) provide an 

ideal environment for waves that re-suspend lake-bottom sediments. The mean water depth for 

the chirp data collection was approximately 8ft (2.4m). A wave height of 2.5ft (0.75m) is 

sufficient to interact with the sediment interface and Troslcair (2013) found a 4-yr time frame 

(2008-2011) during which mean wave heights ranged 0.4ft (0.12m) to 0.5ft (0.15m) with 

maximum wave heightsof 4ft (1.23m) to 5.5ft (1.7m).The re-suspension of sediment has a 

chance to disturb artifacts left by faulting such as fault scarps. Altered fault scarps could easily 

blend in with the surrounding imperfections of the lake sub strata. Evidence of sediment re-

suspension would be massive bedding, this occurs in the upper 2ft (0.5m) of some of the cores 

(Appx. A) collected in Lake Borgne. Even though the Chirp system is capable of imaging 

centimeter-scale offsets of strata, wave activity can erase the scarps leaving nothing to be 

imaged.   

5.4 Chirp Data Resolution 

The ability to resolve small-scale (<3.9in) (<10cm) offset within near surface strata is 

dictated by the resolution of the techniques used to image strata.  To gauge whether Chirp 

seismic could image recent stratigraphic offsets the slowest published Holocene slip rate was 

considered when calculating an estimate of Holocene throw (.05in/yr Yeager et al., 2012).  For 

example assume the middle Holocene (stratigraphic depth of channel) is approximately 5kyr old 

and if the slip rate averaged .05in/ yr (1.2mm/yr), than the expected total throw would be 

approximately 20ft (6m). The manual for the Edgetech SB-216 states that maximum resolution is 
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2.3in (5.8cm) for the settings (2-12 kHz) that were used for data collection of this study. This 

means assuming the faults were active from 5ka to present time that the Chirp system would 

have the capability to image the offset created by the faults.   

 

5.5 River Channel Steering 
 

Before the invasive techniques used for oil, natural gas and water extraction existed the 

two main causes of subsidence in southern Louisiana were natural compaction and faulting. The 

channel occurs in the upper third of the Holocene strata within the progradational facies as 

outlined in Frazier (1967). With the depth and size of the channel (500ft wide) (152m) it is 

probable that this channel was a part of the St. Bernard delta complex when that delta lobe was 

active (1.3 – 3.5ka) (Törnqvist et al., 1996). Since channels and rivers direct themselves towards 

areas of maximum subsidence (Alexander and Leeder, 1987) and during this time in the 

development of the Mississippi river delta, faulting would have played a major role in 

subsidence.  

 The way that a channel or river responds when it encounters a fault depends on the width 

of the channel, the offset of the fault, and the orientation of the channel with respect to the fault. 

A study (Armstrong et al., 2014) using a 3-D seismic survey located in Breton Sound and 

Barataria Bay which is located approximately 12 miles south of Lake Borgne. This study 

investigated 54 different paleo-channels that crossed over Miocene growth faults. The study 

concluded that narrow channels (393- 492ft) (120-150m) are more likely to parallel the hanging 

wall after they encounter a fault while wider channels and channel belts tend to emerge 

perpendicular to the strike of a fault. Another factor that influences how the channel reacts after 

it crosses a fault is the displacement of the fault scarp. A river crossing a fault scarp with a higher 
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displacement is more likely to parallel the hanging wall than to come out perpendicular to the 

fault trace (Armstrong et al., 2014). 

 In the case of the channel that parallels fault #3 for 4mi (6.4km) it is difficult to tell the 

orientation of the channel before and after the fault because the Chirp seismic is only close to the 

projected fault. The channel is present on the western most Chirp line that is closest to the marsh 

and when moving eastward the channel is present for 11 lines and then disappears. The 

disappearance of the channel could indicate that it returns to its original orientation before it 

encountered the fault. If the channel was a part of the St. Bernard delta complex the termination 

of the channel would be expected to be further to the west. More Chirp seismic in the area would 

help locate the channel.  
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Chapter 6. Conclusion 

 The analysis of well-log data, deep industry seismic surveys (~24,000ft) (7,300m), high- 

resolution seismic data, and aerial photography. These data were used to evaluate evidence of 

fault motion within the Holocene stratigraphy and geomorphology of the Lake Borgne region 

within the Pontchartrain Basin. Three down-to-the-south faults were found within the northern 

half of the industry seismic volumes, analysis within the southern section of the surveys was 

hampered by poorer quality data, and no significant fault trends vertically <328ft (100m) and 

horizontally <0.6mi (1km) were identified. This system is strike-aligned to the BRFS and 

industry seismic data within Lake Pontchartrain suggests a structural linkage that has created a 

predominantly down-to-the-basin, regionally extensive (>328ft) (>100m) fault trend. High-

resolution Chirp seismic across the fault trends imaged Holocene channel patterns with the 

largest and most continuous of the channels strike-aligned to the trend of a fault that can be 

mapped to within 1600ft (487m) of the subsurface. The channel is continuous along the 

structural trend for 4mi (6.4km) mimicking the fault trace that entire distance. 

 Experimental and field studies of fluvial evolution have shown the pivotal role that land-

surface elevation changes can lend to shifting fluvial patterns specifically toward zones of 

subsidence (Alexander and Leeder, 1987, Peakall et al., 2000, Kim et al., 2010). Besides 

controlling individual fluvial channels tectonic tilting has been experimentally shown to cause 

channel-belts to shift towards areas of increased subsidence (Mackey and Bridge, 1995). In 

addition to influencing the path of fluvial channels, faulting can also change the sinuosity and 

avulsion frequency of a channel as shown in a study by Maynard (2006). 

 The younger, landbridge geomorphology of the area lying between Lake Borgne and  
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Lake Pontchartrain provides additional evidence of recent elevation adjustments. Aerial imagery 

shows linear patterns in marshland along of the fault-strike extrapolated trace between Lake 

Borgne and Lake Pontchartrain. A clear indication of fault scarping in a fetch-limited interior 

marsh pond as well as the ongoing enlargement and creation of water bodies within the fault 

trend axis suggest a more recent slip than what controlled likely mid to late Holocene channels of 

the Mississippi River Delta.   

The merger of deep seismic, shallow seismic and sequential aerial imagery has revealed 

that deep-seated faults are extending into the shallow stratigraphy of the Lake Borgne Area. As 

shown by Chirp imaging these faults influenced mid to late Holocene river channels as the 

Mississippi River Delta prograded across the study area. The indicative fault features shown in 

the aerial photography expose that the marsh within the Landbridge was and will be continually 

shaped by faulting.    
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APPENDIX A Cores 
 

 

Appendix A Figure 1. Distribution of the vibracores within Lake Borgne. 



 65 

Appendix A Figure 2. Vibracore 96-1 
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Appendix A Figure 3. Vibracore 96-2 
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Appendix A Figure 4. Vibracore 96-3 
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Appendix A Figure 5. Vibracore 96-4 
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Appendix A Figure 6. Vibracore 96-5 
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Appendix A Figure 7. Vibracore 97-16 
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Appendix A Figure 8. Vibracore 97-17 
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Appendix A Figure 9. Vibracore 97-18 



 73 

Appendix A Figure 10. Vibracore 97-19 
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Appendix A Figure 11. Vibracore 97-21 
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Appendix A Figure 12. Vibracore97-2 
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Appendix B Chirp Collection Dates 
 

Table 2. Shows the collection starts and end times of each Chirp line that was collected as well 

as the azimuth along which the line was collected. 

 

  

Date 
07/18/2016 

Weather - Clear 
Speed ~ 3.7 

Knots 
Seas < 1 foot Frequency 2-12kHz 

Line # Start Time End Time Collection Direction Notes 

36 10:20am 10:27am North 
 

35 10:33am 10:40am South 
 

33 10:46am 10:55am North 
 

31 11:03am 11:10am South 
 

29 11:15am 11:24am South 
 

27 11:29am 11:39am North Wind Speed Increased waves ~ 1 foot 

25 11:44am 12:05pm South 
 

23 12:17pm 12:35pm North 
 

21 12:41pm 1:01pm South 
 

19 1:09pm 1:17pm South 
 

17 1:23pm 1:31pm North 
 

15 1:36pm 1:44pm South 
 

13 1:50pm 1:59pm North 
 

11 2:11pm 2:18pm South 
 

9 2:39pm 2:45pm North 
 

Date 
07/19/2016 

Morning - 
Storms 

Speed ~ 4.0 
Knots 

Seas ~ 1 foot Frequency 2-12kHz 

Line # Start Time End Time Collection Direction Notes 

24 11:13am 11:23am North 
 

22 11:28am 11:36am South 
 

20 11:43am 11:53am North 
 

18 11:57am 12:06pm South 
 

16 12:13pm 12:22pm North 
 

14 12:29pm 12:37pm South 
 

12 12:45pm 12:54pm North 
 

10 12:59pm 1:08pm South 
 

8 1:15pm 1:24pm North 
 

6 1:29pm 1:37pm South 
 

4 1:43pm 1:50pm North 
 

3 1:56pm 2:04pm South 
 

2 2:08pm 2:16pm North 
 

1 2:20pm 2:28pm South Ended Day Due to Storms 
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APPENDIX CChirp Seismic Lines 
 

Appendix C Figure 1. Chirp seismic line 7. The blue dashed line represents the Holocene/Pleistocene boundary.  

Appendix C Figure 2. Chirp seismic line 1. The blue dashed line represents the Holocene/Pleistocene boundary and the green line 

represents the interpreted channel bottom.  
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Water/Sediment Interface 

Water/Sediment Interface 

Appendix C Figure 1. Chirp seismic line #7. The dashed blue line represents where the approximate Holocene/Pleistocene age 

boundary is based on an isopach map from Kulp et al. (2002) (inset map from USGS Landsat Look Viewer March 27, 2015). 

 S N 

Appendix C Figure 2. Chirp seismic line #1. The green line represents the interpreted channel bottom and the dashed blue line 

represents where the approximate Holocene/Pleistocene age boundary is based on an isopach map from Kulp et al. (2002) (inset map 

from USGS Landsat Look Viewer March 27, 2015). 
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Appendix C Figure 3. Chirp seismic line 3. The blue dashed line represents the Holocene/Pleistocene boundary and the green line 

represents the interpreted channel bottom. 

Appendix C Figure 4. Chirp seismic line 4. The blue dashed line represents the Holocene/Pleistocene boundary and the green line 

represents the interpreted channel bottom. 
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Water/Sediment Interface 

Appendix C Figure 3. Chirp seismic line #3. The green line represents the interpreted channel bottom and the dashed blue line 

represents where the approximate Holocene/Pleistocene age boundary is based on an isopach map from Kulp et al. (2002) (inset map 

from USGS Landsat Look Viewer March 27, 2015). 

 

Appendix C Figure 4. Chirp seismic line #4. The green line represents the interpreted channel bottom and the dashed blue line 

represents where the approximate Holocene/Pleistocene age boundary is based on an isopach map from Kulp et al. (2002) (inset map 

from USGS Landsat Look Viewer March 27, 2015). 
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Appendix C Figure 5. Chirp seismic line 6. The blue dashed line represents the Holocene/Pleistocene boundary and the green line 

represents the interpreted channel bottom. 

Appendix C Figure 6. Chirp seismic line 8. The blue dashed line represents the Holocene/Pleistocene boundary and the green line 

represents the interpreted channel bottom. 
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Water/Sediment Interface 

Appendix C Figure 6. Chirp seismic line #8. The green line represents the interpreted channel bottom and the dashed blue line 

represents where the approximate Holocene/Pleistocene age boundary is based on an isopach map from Kulp et al. (2002) (inset map 

from USGS Landsat Look Viewer March 27, 2015). 

 

Appendix C Figure 5. Chirp seismic line #6. The green line represents the interpreted channel bottom and the dashed blue line 

represents where the approximate Holocene/Pleistocene age boundary is based on an isopach map from Kulp et al. (2002) (inset map 

from USGS Landsat Look Viewer March 27, 2015). 
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Appendix C Figure 7. Chirp seismic line 12. The blue dashed line represents the Holocene/Pleistocene boundary and the green line 

represents the interpreted channel bottom. 

 

Appendix C Figure 8. Chirp seismic line 14. The blue dashed line represents the Holocene/Pleistocene boundary and the green line 

represents the interpreted channel bottom. 
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Water/Sediment Interface 

Appendix C Figure 7. Chirp seismic line #12. The green line represents the interpreted channel bottom and the dashed blue line 

represents where the approximate Holocene/Pleistocene age boundary is based on an isopach map from Kulp et al. (2002) (inset map 

from USGS Landsat Look Viewer March 27, 2015). 

 

Appendix C Figure 8. Chirp seismic line #14. The green line represents the interpreted channel bottom and the dashed blue line 

represents where the approximate Holocene/Pleistocene age boundary is based on an isopach map from Kulp et al. (2002) (inset map 

from USGS Landsat Look Viewer March 27, 2015). 
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Appendix C Figure 9. Chirp seismic line 16. The blue dashed line represents the Holocene/Pleistocene boundary and the green line 

represents the interpreted channel bottom. 

 

 

Appendix C Figure 10. Chirp seismic line 18. The blue dashed line represents the Holocene/Pleistocene boundary and the green line 

represents the interpreted channel bottom. 
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Appendix C Figure 9. Chirp seismic line #16. The green line represents the interpreted channel bottom and the dashed blue line 

represents where the approximate Holocene/Pleistocene age boundary is based on an isopach map from Kulp et al. (2002) (inset map 

from USGS Landsat Look Viewer March 27, 2015). 
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Water/Sediment Interface 

Appendix C Figure 10. Chirp seismic line #18. The green line represents the interpreted channel bottom and the dashed blue line 

represents where the approximate Holocene/Pleistocene age boundary is based on an isopach map from Kulp et al. (2002) (inset map 

from USGS Landsat Look Viewer March 27, 2015). 
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Appendix C Figure 11. Chirp seismic line 20. The blue dashed line represents the Holocene/Pleistocene boundary and the green line 

represents the interpreted channel bottom. 
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Appendix C Figure 11. Chirp seismic line #20. The green line represents the interpreted channel bottom and the dashed blue line 

represents where the approximate Holocene/Pleistocene age boundary is based on an isopach map from Kulp et al. (2002) (inset map 

from USGS Landsat Look Viewer March 27, 2015). 
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